Show simple item record

dc.contributor.authorObiero, Beatrice Adhiambo
dc.contributor.authorWanjala, Victor
dc.date.accessioned2021-10-04T07:11:44Z
dc.date.available2021-10-04T07:11:44Z
dc.date.issued2021-06-26
dc.identifier.urihttp://repository.rongovarsity.ac.ke/handle/123456789/2355
dc.description.abstractIn this paper, we introduce the class of (n, mBQ) operators acting on a complex Hilbert space H. An operator if T ∈ B (H) is said to belong to class (n, mBQ) if T ∗2mT 2n commutes with (T ∗mTn ) 2 equivalently [T ∗2mT 2n, (T ∗mTn)2] = 0, for a positive integers n and m. We investigate algebraic properties that this class enjoys. Have. We analyze the relation of this class to (n,m)-power class (Q) operators.en_US
dc.language.isoenen_US
dc.publisherWorld Journal of Advanced Research and Reviewsen_US
dc.rightsAttribution-NonCommercial-ShareAlike 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/us/*
dc.subject(n,m)-power Class (Q); Normal; Binormal operators; N-power class (Q); (BQ) operators; (n,mBQ) operatorsen_US
dc.titleOn class (n, mBQ) Operatorsen_US
dc.typeArticleen_US


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-ShareAlike 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-ShareAlike 3.0 United States